2007年度 情報数理 レポート4 学生用

字籍番号:		氏名:		
下記の注意事項を守	<u>り</u> 、次ページ以降の問	いに答え、レポ-	ートを完成させなさ	ر١ _°
	限: 2007 年 12 月 18 所: 理学部棟 正面玄	• •		
で忘れずに言	:印刷し、必要事項を記え 3人すること)、レポート	の表紙として提出	すること。	
(問→解答→ に印刷して数 (3) クラスメイ〕	7トウェアや図形処理ソ 問→解答→ ・・・ の順にな }出すること (手書きは⁷ 、のレポートを参考にし	るように記述する。 「可)。 たり、クラスメイト	こと)、 A4 サイズの用 トと協力してレポート	紙を
これらの場合 (4) 情報数理につ	↑は、教員控の協力者氏/ ↑も、自分の言葉で表現 いいて、あなたの声を聞/ 気軽にどうぞ(成績には	し直すこと。 コピ- かせてください (教	-禁止 。 員控の意見・質問欄に	
出題者: 幸山 直人 出題日: 2007年12	月 5 日 (水)		得点:	/6
	切り)取り線		
20	07年度 情報数理	レポート4	教員控	
学籍番号:		氏名:		
協力者氏名:	,		,	
レポート作成に要した	時間:	時間	得点:	/6
意見•質問:			14.00	

固1 ある符号の集合 $\{a,b,c,d\}$ から成る符号語 $\boldsymbol{x}=(a,b,c,a,d,d,a,c,c,a,b,b,a,d,d,d)$ と $\boldsymbol{y}=(a,c,c,a,a,a,a,c,c,a,b,b,a,b,b,d)$ のハミング距離を求めなさい。(1点)

解答例 ハミング距離の定義より、各成分ごとに比較し、異なれば 1、同じであれば 0 として、その総和を取ればよい。したがて、

であるから、その総和を取ればハミング距離は、

となる。

評価基準 解答例に準じた解答であれば1点。

| 問 $\mathbf{2}$ | ガロア体 $\mathrm{GF}(11)$ の各元 x に対する乗法に関する逆元 x^{-1} をそれぞれ求めなさい。(1 点)

解答例 ガロア体 $GF(11) = \{0,1,2,3,4,5,6,7,8,9,10\}$ の各元は以下の通りである。ただし、零元 0 に対する乗法に関する逆元は存在しない。

```
\begin{array}{lll} 1^{-1} = 1 & (\because 1 \cdot 1 = 1 \equiv 1 \pmod{11}) \\ 2^{-1} = 6 & (\because 2 \cdot 6 = 12 = 11 + 1 \equiv 1 \pmod{11}) \\ 3^{-1} = 4 & (\because 3 \cdot 4 = 12 = 11 + 1 \equiv 1 \pmod{11}) \\ 4^{-1} = 3 & (\because 4 \cdot 3 = 12 = 11 + 1 \equiv 1 \pmod{11}) \\ 5^{-1} = 9 & (\because 5 \cdot 9 = 45 = 44 + 1 \equiv 1 \pmod{11}) \\ 6^{-1} = 2 & (\because 6 \cdot 2 = 12 = 11 + 1 \equiv 1 \pmod{11}) \\ 7^{-1} = 8 & (\because 7 \cdot 8 = 56 = 55 + 1 \equiv 1 \pmod{11}) \\ 8^{-1} = 7 & (\because 8 \cdot 7 = 56 = 55 + 1 \equiv 1 \pmod{11}) \\ 9^{-1} = 5 & (\because 9 \cdot 5 = 45 = 44 + 1 \equiv 1 \pmod{11}) \\ 10^{-1} = 10 & (\because 10 \cdot 10 = 100 = 99 + 1 \equiv 1 \pmod{11}) \end{array}
```

問3 原始多項式 x^3+x+1 の1つの根 α をガロア拡大体 $\mathrm{GF}(2^3)$ の原始元とするとき、ガロア拡大体 $\mathrm{GF}(2^3)$ の加法表を完成しなさい。ただし、値は**べき表現**で記述すること。(2 点)

解答

+	0	1	α	α^2	α^3	$lpha^4$	$lpha^5$	α^6
0	0	1	α	α^2	α^3	α^4	α^5	α^6
1	1	0	α^3	$lpha^6$	α	$lpha^5$	$lpha^4$	$ \alpha^2 $
α	α	$lpha^3$	0	$lpha^4$	1	$lpha^2$	$lpha^6$	$lpha^5$
α^2	α^2	$lpha^6$	$lpha^4$	0	$lpha^5$	α	α^3	1
α^3	α^3	α	1	$lpha^5$	0	α^6	α^2	$lpha^4$
α^4	α^4	$lpha^5$	$lpha^2$	α	α^6	0	1	$lpha^3$
α^5	$lpha^5$		α^6	α^3	α^2			α
α^6	α^6	α^2	$lpha^5$	1	$lpha^4$	α^3	α	0

評価基準 解答例に準じた解答であれば2点。

間4 原始多項式 $x^8 + x^4 + x^3 + x^2 + 1$ の 1 つの根 α をガロア拡大体 $GF(2^8)$ の原始元とするとき、多項式 $h(x) = \alpha^3 x^3 + \alpha x^2 + \alpha^6 x + \alpha^{19}$ を多項式 $g(x) = x^2 + \alpha^{17} x + \alpha^{200}$ で割った余り (剰余) r(x) を求めなさい。 (2点)

解答例 $h(x) \div g(x)$ を計算すると

となる $(\alpha^{293}=\alpha^{255}\cdot \alpha^{38}=1\cdot \alpha^{38}=\alpha^{38})$ 。従って、剰余 r(x) は $\alpha^{118}x+\alpha^{111}$ である。

評価基準 ステップ1まで正しければ1点。ステップ2まで正しければ更に1点。