第3章 QRコードを作ろう！

3.1 QRコードの概要

近年、カメラ付き携帯電話の普及と共に、図3.1のようなQRコードと呼ばれる2次元コードをよく見かけるようになりました。QRコードは、1994年に日本の株式会社デンソーウェーブによって開発され、1999年には日本工業規格として「JIS X 0510 2次元コードシンボル～QRコード～基本仕様」が制定されました。

図3.1: QRコードの例

2次元コードの歴史と概要については、以下のホームページを参考にしてください。

- QRコードドットコム [https://www.qrcode.com/]
 株式会社デンソーウェーブ [https://www.denso-wave.com/]の運営するサイト
- バーコード講座 [https://www.keyence.co.jp/ss/products/autoid/codereader/]
 株式会社キーエンス [https://www.keyence.co.jp/]の運営するサイト

QRコードの基本仕様は、以下のホームページから閲覧または購入することができます。

- 日本工業標準調査会 [http://www.jisc.go.jp/] 閲覧可
 JISC; Japanese Industrial Standards Committee
- 財団法人 日本規格協会 [https://www.jsa.or.jp] 購入可
 JSA; Japanese Standards Association

1この2次元コードが高速読み取りを重視して開発されたという経緯から、「QRコード」の“QR”は、高速読み取りを表す「クイック・レスポンス（Quick Response）」を由来としています。ただし、この2次元コードの正式名称は「QRコード」で、「クイック・レスポンス・コード（Quick Response Code）」の略称ではありません。なお、「QRコード」という名称は、その開発元である株式会社デンソーウェーブによって商標登録されています。
3.2 QR コードの作成条件と構造

以下の条件で、QR コードを作成します。

- モデル: 2 (推奨されている)
- 型番: 1 (21 × 21 モジュール)
- 誤り訂正レベル: L (復元能力 7%)
- マスクパターン: 000 (市松模様)
- モード指示子: 1000 (漢字モード)

なお、型番 1 (21 × 21 モジュール) の QR コードの構造は図 3.2 のようになっています。

- 青色 □: 位置検出パターン
- 赤色 □: タイミングパターン
- 緑色 □: 形式情報
- 黄色 □: データおよび誤り訂正コード語
- 白色と黒色: 固定されている

図 3.2: QR コードの構造
3.3 QR コードを作ろう！

作成手順は、以下のようなになります。

STEP1 データの符号化

(1-1) シフト JIS 漢字コードを 13 ビットに圧縮する。

(1-2) モード指示子 (漢字モード: 1000), 文字数指示子 (文字数を 8 ビットで表現), (1-1) で求めたデータを順に連結する。

(1-3) (1-2) で得たデータ列に終端パターン (0000) を連結する。

(1-4) (1-3) で得たデータ列を 8 ビットごとに区切る。

(1-5) (1-4) で得たデータ列に、データ容量を満たすまで、埋め草コード語 11101100 および 00010001 を交互に付け加する。

(1-6) (1-5) で得たデータ列から誤り訂正コード語 (生成多項式による剰余) を求める。

(1-7) (1-5) で得たデータ列に (1-6) で得たデータ列を連結する。

STEP2 マスク処理

(2-1) 仕様にしたがって、STEP1 の (1-7) で得たデータ列を QR コードのデータおよび誤り訂正コード語領域に配置する (= モジュールパターン)。

(2-2) モジュールパターンに市松模様 (000) のマスク処理を施す。

STEP3 形式情報の符号化

(3-1) 誤り訂正レベル (L: 01) とマスクパターン (市松模様: 000) を連結する。

(3-2) (3-1) で得たデータ列 (01000) から誤り訂正コード語 (生成多項式による剰余) を求める。

(3-3) (3-1) で得たデータ列に (3-2) で得たデータ列を連結する。

(3-4) (3-3) で得たデータ列と 10101000010010 の排他論理和をとる。

(3-5) 仕様にしたがって、(3-4) で得たデータ列を形式情報領域に配置する。

完成!!!

では、実際に QR コードを作成して行きましょう。例として、漢字文字列「幸山直人」を QR コードにして行きます。

注: 作成作業を容易にするために、幾つかの手順が簡略化されています。
第3章 QRコードを作ろう！

STEP1 データの符号化

(1-1) シフト JIS 漢字コードを 13 ビットに圧縮する。

まず、各漢字 "幸", "山", "直", "人" を対応するシフト JIS 漢字コードに変換します。

(幸, 山, 直, 人) → (8D4B16, 8E5216, 92BC16, 906C16)

次に、各シフト JIS 漢字コードを 13 ビットに圧縮します。

814016～9FFC16 であれば 814016 を、E04016～EBBF16 であれば C14016 を、それぞれ減じます。

→ (8D4B16 - 814016, 8E5216 - 814016, 92BC16 - 814016, 906C16 - 814016)

さらに、上位 2 バイトに C016 を乗じ、下位 2 バイトを加算します。

→ (0C16 × C016 + 0B16, 0D16 × C0 + 1216, 1116 × C0 + 7C16, 0F16 × C0 + 2C16)

13 ビット以下で表現可能な数となっているので、それぞれ 13 ビットの 2 進数に変換します。

→ (0100100001110, 0100111010010, 0110100111100, 01110111011002, 01110111011002)

注意: 3 文字の人は 0 を、5 文字の人は 000000 を、それぞれ終端に補って 8 ビット長にします。

(1-2) モード指示子 (漢字モード: 1000), 文字数指示子 (文字数を 8 ビットで表現), (1-1) で求めたデータを順に連結する。

漢字 4 文字なので、文字数指示子は 00000100 となります。モード指示子, 文字数指示子, (1-1) で求めたデータを順に連結します。

→ (1000, 00000100, 0100100001110, 0100111010010, 0110100111100, 0111011101100, 0111011101100)

注意: 3 文字の人 00000011 が、5 文字の人は 00000101 が、文字数指示子となります。

(1-3) (1-2) で得たデータ列に終端パターン (0000) を連結する。

(1-2) で得たデータ列に終端パターン (0000) を連結します。

→ (1000, 00000100, 0100100001110, 0100111010010, 0110100111100, 0111011101100, 000)

注意: 3 文字の人は 0 を、5 文字の人は 00000000 を、それぞれ終端に補って 8 ビット長にします。

(1-4) (1-3) で得たデータ列を 8 ビットごとに区切る。

(1-3) で得たデータ列を 8 ビットごとに区切り直します。最後は、8 ビットに満たないので 0000 を付け加えて、8 ビット長にします。

→ (10000000, 01000100, 10000101, 01010111, 01001001, 10101111, 10001011, 01101100, 00000000)

注意: 3 文字の人は 0 を、5 文字の人は 00000000 を、それぞれ終端に補って 8 ビット長にします。
訂正可能な数は注意: 本来、減するための条件を加えると、実用的な誤り訂正可能な数は 2 となります。また、生成多項式についても、誤り訂正可能な数が 2 となります。

したがって、誤り訂正コード語の多項式表現は、埋め草コード語の係数を全て 0 とみなすことを交互に付加する。

19 バイトのデータ長になるように、埋め草コード語 11101100 および 00010001 を交互に付加します。

→ (10000000, 01000100, 10000101, 10100111, 01001001, 10100111, 10001011, 01101100, 00000000, 11101100, 00010001, 11101100, 00010001, 11101100, 00010001, 11101100, 00010001)

(1-6) (1-5) で得たデータ列から誤り訂正コード語 (生成多項式による剰余) を求める。

GF(2^8) 上の 3 個 (最小距離 8) の誤りが訂正可能な [26,19]RS 符号として、誤り訂正コード語を求めます (q = 2^8, m = 1, t = 3)。すなわち、GF(2^8) の原始元を α とすると、生成多項式は

\[G(x) = (x - α^0)(x - α^1)(x - α^2)(x - α^3)(x - α^4)(x - α^5)(x - α^6) = x^7 + α^87x^6 + α^{229}x^5 + α^{146}x^4 + α^{149}x^3 + α^{238}x^2 + α^{102}x + α^{21} \]

となります (下記の注意も参照のこと)。また、(1-5) で得たデータ列を GF(2^8) の元で表せば、

→ (α^7, α^{102}, α^{128}, α^{205}, α^{152}, α^{205}, α^{237}, α^{250}, 0, α^{122}, α^{100}, α^{122}, α^{100}, α^{122}, α^{100})

となるので (ベクトル表現→べき乗表現)、データ (情報) を多項式表現すると

\[I(x) = α^7x^{18} + α^{102}x^{17} + α^{128}x^{16} + α^{205}x^{15} + α^{152}x^{14} + α^{205}x^{13} + α^{237}x^{12} + α^{250}x^{11} + 0x^{10} + α^{122}x^{9} + α^{100}x^{8} + α^{122}x^{7} + α^{100}x^6 + α^{122}x^5 + α^{100}x^4 + α^{122}x^3 + α^{100}x^2 + α^{122}x + α^{100} \]

となります。したがって、誤り訂正コード語の多項式表現は

\[R(x) = [I(x)x^7] \mod G(x) = α^{214}x^6 + α^{83}x^5 + α^{238}x^4 + α^{63}x^3 + α^{179}x^2 + α^{221}x + α^{230} \]

となります (7 = 26 - 19)。

注意: 本来、GF(2^8) 上の RS 符号の符号長は 255 (= 2^8 - 1) ですが、下記のようにデータの高次の係数を全て 0 とみなす (高次の係数は使用しない) ことで符号長を短縮しています。

(0, 0, 0, 0, x_{25}, x_{24}, …, x_1, x_0)。

また、生成多項式についても、誤り訂正可能な数が 3 個であることから最小多項式の次数は 6 (最小距離 7) でよいのですが、(x - α^6) を加えて次数を 7 (最小距離 8) にしても最小距離が 1 増えるだけなので誤り訂正可能な数は変わりません。このとき、QR コードの復号誤りの可能性を低減するための条件を加えると、実用的な誤り訂正可能な数は 2 個に制限されます (理論上の誤り訂正可能な数は 3 個)。以上より、符号長 26 のうち 2 個の誤りが訂正可能な誤り訂正符号となり、誤り訂正率は 2/26 = 0.0769 となるため、誤り訂正レベル L (7%以上) を満たします。
(1-7) (1-5)で得たデータ列に (1-6) で得たデータ列を連結する。

符号語 (データ + 誤り訂正データ語) を作成しましょう。GF(2^8) 上および GF(2) 上の演算であることに注意すれば、巡回符号 (RS 番号) の符号語の多項式表現は

\[X(x) = I(x)x^7 - R(x) = I(x)x^7 + R(x) \]

によって与えられましたから、(1-6) より多項式の係数を並べれば、符号語

\[\rightarrow (\alpha^7, \alpha^{102}, \alpha^{128}, \alpha^{205}, \alpha^{152}, \alpha^{205}, \alpha^{237}, \alpha^{250}, 0, \alpha^{122}, \alpha^{100}, \alpha^{122}, \alpha^{100}, \alpha^{122}, \alpha^{122}, \alpha^{100}, \alpha^{214}, \alpha^{83}, \alpha^{238}, \alpha^{63}, \alpha^{179}, \alpha^{221}, \alpha^{230}) \]

が得られます。これをベクトル表現すれば、データおよび誤り訂正コード語領域を埋める 208 (= 26 × 8) 個の 2 元符号が得られます:

\[\rightarrow (10000000, 01000100, 10000101, 10100111, 01001001, 10100111, 10001011, 01101100, 00000000, 11101100, 00010001, 11101100, 00010001, 11101100, 11101100, 00000000, 11110100, 00000000, 01000101, 01001011, 01000101, 01001011, 01000101, 11110100) \]

注意：第 2 章では右から高次の係数を並べましたが、ここでは、左から高次の係数を並べます。これは本質的な問題ではなく、仕様の問題です。
STEP2 マスク処理

(2-1) 仕様にしたがって、STEP1 の (1-7) で得たデータ列を QR コードのデータおよび誤り訂正コード語領域に配置する。

STEP1 の (1-7) で得たデータ列を、0 ならば明、1 ならば暗で、図 3.3 に記述してある 001 から 208 の番号順に埋めていきます。

図 3.3: データおよび誤り訂正コード語の配置
第3章 QRコードを作ろう！

(2-2) モジュールパターンに市松模様 (000) のマスク処理を施す。

(2-1) の図 3.3 に市松模様 (図 3.4) のマスクをかけます。すなわち、同じ番号で

明かつ明ならば明 $\ (0 \oplus 0 = 0)$

明かつ暗ならば暗 $\ (0 \oplus 1 = 1)$

暗かつ暗ならば明 $\ (1 \oplus 1 = 0)$

のように排他的論理和をとります。ただし、灰色の部分は除きます。なお、マスクをかけた後のQRコードは図 3.6 を見てください。

図 3.4: 市松模様によるマスクパターン
STEP3 形式情報の符号化

(3-1) 誤り訂正レベル \((L: 01)\) とマスクパターン (市松模様: 000) を連結する。

\[
(01, 000) \rightarrow (0, 1, 0, 0, 0)
\]

(3-2) (3-1) で得たデータ列 \((01000)\) から誤り訂正コード語 (生成多項式による剰余) を求める。

GF(2) 上の 3 個 (最小距離 7) の誤りが訂正可能な [15,5]BCH 符号として、誤り訂正コード語を求めます \((m = 4, t = 3)\)。すなわち、GF(2^4) の原始元を \(\alpha\) とすると、生成多項式は

\[
G(x) = (x - \alpha^1)(x - \alpha^2)(x - \alpha^3)(x - \alpha^4)(x - \alpha^5)(x - \alpha^6)(x - \alpha^7)(x - \alpha^8)(x - \alpha^9)(x - \alpha^{10})(x - \alpha^{12})
\]

となります。また、データ (情報) を多項式表現すると

\[
I(x) = 0x^4 + 1x^3 + 0x^2 + 0x + 0 = x^3
\]

となります。したがって、誤り訂正コード語の多項式表現は

\[
R(x) = [I(x)x^{10}] \mod G(x)
\]

となりますが \(10 = 15 - 5\)。

(3-3) (3-1) で得たデータ列に (3-2) で得たデータ列を連結する。

形式情報の符号語 (データ + 誤り訂正データ語) を作成しましょう。GF(2^4) 上および GF(2) 上の演算であることに注意すれば、巡回符号 (BCH 符号) の符号語の多項式表現は

\[
X(x) = I(x)x^{10} - R(x) = I(x)x^{10} + R(x)
\]

によって与えられましたから、(3-2) より多項式の係数を並べれば、符号語

\[
\rightarrow (0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0)
\]

が得られます。

注意: 第 2 章では右から高次の係数を並べましたが、ここでは、左から高次の係数を並べます。これは本質的な問題ではなく、仕様の問題です。

(3-4) (3-3) で得たデータ列と 101010000010010 の排他的論理和をとる。

\[
\begin{array}{c}
010001111010110 \\
\oplus \quad 101010000010010 \\
\hline
111011111000100
\end{array}
\]

\[
\rightarrow (1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0)
\]
(3-5) 仕様にしたがって、(3-4) で得たデータ列を形式情報領域に配置する。

(3-4) で得たデータ列を、0 ならば明、1 ならば暗で、図 3.5 に記述している 01 から 15 の番号順に埋めていきます。なお、形式情報はデータおよび誤り訂正コード語の解読に必修の情報であるため、2ヶ所に配置することで冗長性を高めています。

図 3.5: 形式情報の配置
完成!!! (2-2) で得たデータおよび誤り訂正コード語にマスク処理を施したもの、および、(3-5)の形式情報、タイミングパターン、位置検出パターンを1つにまとめれば、図3.6のようなQRコードが完成します。
如何だったでしょうか。本テキストを通して、数学を身近に感じていたければ幸いに思います。